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ABSTRACT

Image analysis often starts with some

preliminary segmentation which provides a

representation of the scene needed for further

interpretation. Segmentation can be performed in

several ways, which are categorized as pixel-

based, edge-based, and region-based. Each of

these approaches are affected differently by

various factors, and the final result may be

improved by integrating several or all of these

methods, thus taking advantage of their

complementary nature.

In this paper, we propose an approach that

integrates pixel-based and edge-based results by

utilizing an iterative relaxation technique. This

approach has been implemented on a massively

parallel computer and tested on some remotely

sensed imagery from the Landsat-Thematic

Mapper (TM) sensor.

1. INTRODUCTION

After pre-processing of some original data,

image segmentation is the process which

generates a spatial description of an image as a

set of specific parts, regions or objects. The

"segmented" output is then utilized by a higher-

level image interpretation process. There is no

single standard approach to segmentation which

would be "successful" for any type of data, but

some general methods have been developed

based on the two main characteristics of regions

or objects in an image:

(1) each region or object exhibits an internal

uniformity with respect to some image

property (e.g., gray level, color, texture),

(2) each region or object presents some

contrast with its surroundings.

These two properties lead to three different

types of segmentations, pixel-based, region-

based and edge-based segmentations.

Each of these approaches is affected

differently by various factors. Pixel-based

methods form their decision only based on the

information given at each pixel, while the two

other types of segmentation take into account the

information contained in the surrounding pixels.

Usually in a pixel-based approach, all of the

original information is utilized, thus avoiding

selection process. Such methods are also easier

to integrate in a learning process, but their main
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drawback is that they do not take into account

spatial information. Conversely, edge- and

region-based approaches base their decision on

spatial information. Edge-based methods

measure the variation of intensity between pixels

belonging to different objects; they may produce

excellent results for unevenly illuminated images,

but they also can be very sensitive to noise.

Region-based approaches, which measure the

internal uniformity of some intensity or texture

function, often produce spurious segmentation

under non-uniform lighting conditions, but are

usually less sensitive to noise.

In general, these three types of

segmentation may be improved by integrating

them and by taking advantage of their

complementary nature. We previously proposed

an approach that integrates region segmentation

and edge detection results by interpreting a binary

tree representation (Le Moigne, 1992), thus

producing a refined region segmentation. This

algorithm has been tested on Landsat-TM data.

The integration of edge and region data may also

be performed by a relaxation method and has

been proposed in (Le Moigne, 1989); in the work

described in this paper, we refine this relaxation

method for the purpose of integrating edge and

classification information and we implement it on

a massively parallel computer, the MasPar MP-1.

Then, we test this approach on remotely sensed

imagery, such as Landsat-TM data.

2. RELAXATION TECHNIQUES

a. Overview

A large number of iterative relaxation

schemes have been proposed to improve the

results given by such basic processes as edge

detection, region segmentation or pixel

classification (Davis, 1981; Hummel, 1987;

Faugeras, 1981; Peleg, 1980; Zucker, 1977).

The principle of these algorithms is to utilize

contextual information for iteratively changing

the initial labeling of the objects in a scene toward

optimal labeling.We will concentrate on

relaxation methods for which the decisions at

each point are taken in a probabilistic fashion.

This general class of relaxation techniques is

described in (Davis, 1981). Let us assume that

we have a set of N objects {O1, O 2 ..... ON}

(e.g., the pixels) to be labeled into one of L
n

classes {CI, C2 ..... CL} and that Pi [Ck] is the

probability that the object Oi is assigned to the

class Ck at the iteration n. The principle of the

relaxation algorithms, then, is to build a series of

probability sets {pn[ck] ;1 < i < N; I < k _< L},

where each new iteration step, n, adjusts the

probabilities according to the contextual

information, and these probabilities satisfy the

conditions (1) and (2):

for every i, for every k,
n

0 < Pi [Ck] < 1, (1)
and

t.

every i, __._pn[ck] = 1. (2)for

k=a

Thus, the problem is to define the updating
n

formula for Pi [Ck]. The simplest updating (which

we use in this work) is described below.

The relaxation scheme assumes that the

class assignments of each object depend on the

class assignment of the "other" objects; the

"other" objects can be defined, for example, by

neighboring objects. Therefore, we define
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c[i,k;j,l] as the compatibility coefficient between

the object Oi with the label Ck and the object Oj

with the label Cl. We assume that the c[i,k;j,ll's

belong to the range interval [0,+1] and are

positive if there is compatibility and equal to 0 if

there is high incompatibility. The coefficient

c[i,k;j,l] can be defined as a conditional

probability, p(i e Ck/j • CI), which provides a

n Cprobabilistic framework. Let qi I k] be the global

compatibility for the object Oi with the label Ck; it

is defined by

n 1 j=V[i] I=L
c[i,k;j,1] (3)- p;[cl]qi [Ck] V[i] j=_i 1=_1

where vii] is the number of objects in the

neighborhood of object Oi. Then nqi [Ck] is the

"increment" which is applied to update pn[c k]

and compute the new probability set {pln+l)[ck]}

(see (Davis, 198 I) for details):

n n

Pi [Ck] x qi[Ck]

Pn + 1[Ck] - I=L

"_ n nPi [C1] x qi [C1]

(4)

1=1

This multiplication still ensures that the

conditions (1) and (2) are satisfied. Besides, if

the global compatibility of the object Oi with the

label Ck is higher than all the compatibilities of

Oi with the other labels CI, then the pn[ck]'S
a

increase relative to the other Pi [Cil S. That means

that this scheme provides an overall improvement

of the labeling but it does not guarantee the

convergence toward stable labeling.

Other relaxation schemes (Faugeras, 1981;

Peleg, 1980) utilize different formulas or

different frameworks. For example in (Faugeras,

1981), another way of updating the probabilities

pn[c k] is given; the principle of this other method

is to minimize a criterion by the "projected

gradient" optimization method. The criterion

measures the ambiguity and the consistency of

the current labeling at each step. This algorithm

provides us with a converging sequence of

probabilities pn. Starting from an initial point pO,

the method converges toward a local minimum in

the vicinity of _.

b. Utilizing Relaxation to Integrate
Disparate Information

We now describe how a relaxation

technique, such as the one described above, can

be utilized to integrate knowledge from edge

detection and pixel classification.

Previously, Zucker and Hummel (Zucker,

1977) simultaneously used edge and region data

in a relaxation process for labeling dots. Their

goal was to provide a low-level description of the

roles of dots in cluster analysis. Unlike our

approach, they used these two types of data

"equally", i.e., both edges and regions defined

the labels and the initial probabilities. There were

ten different labels, with eight edge labels at

various orientations, one "region" label called

"interior point" label, and one "noise" label.

In our approach, the labels are all region

labels, and edge data are utilized to update the

labeling by way of the compatibility coefficients.

This approach tends to be more general and this

algorithm can be very easily applied to the fusion

of various types of data. In our work, the
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definition of the labels and the initial probabilities

are provided by a neural network pixel

classification (Chettri, 1992), then the relaxation

process updates the initial labeling by using some

edge detection results, e.g., from a Canny

operator (Canny, 1986). These standard

techniques, pixel classification and edge

detection, can easily be changed without altering

the definition of the overall relaxation algorithm.

Once the initial probabilities are given, the

fusion is realized by computing the

compatibilities between neighboring pixels.

Coefficients c[i,k;j,l] in formula (3) represent the

compatibilities between object Oi with the label

Ck and object Oj with the label C1. If a relaxation

is performed only on regions, these coefficients

represent the compatibilities of neighboring

pixels belonging to given regions. If both regions

and edges are considered, both information can

be integrated into the compatibility coefficients by

utilizing the following equation:

c[i,k;j,1]= pr(Ck/C1) x Fk&l(i,j) (5)

where pr(Ck/Cl) is the "region-probability"

(independent of edges) of i belonging to the class

Ck if the neighbor j belongs to the class CI; this

probability could be estimated from some

previous ground truth data. The last term in Eq.

(5), Fk&l(i,j), is a function that varies in [0,11 and

is:

-closer to 1 if Ck = Cl (or, more generally, if

regions C"kand CI are similar in tone) and i is not

an edge point, or if regions Ck and CI are

different and i is an edge point,

- closer to 0 if Ck = CI and i is an edge point, or

if regions Ck and C1 are different and i is not an

edge point.

For example, F can be defined by:

Fk&l(i,j) = Kk&l x Mag(i)

+ (1- Kk&l ) x (1- Mag(i) )

where Kk&l is equal to 0 if k=l and equal to 1 if

k;el, and Mag(i) is the magnitude of the gradient

computed at the point i and normalized between 0

and 1.

The magnitude of the gradient at neighboring

point j would also be taken into account and we

could utilize the following formula:

Fk&l(i,j)= Kk&l x Mag(i) x Mag(j)

+ (1- Kk&l ) x (1- Mag(i) x Mag(j) ).

This updating has not been implemented yet, but

will be considered in future work.

Therefore, both region and edge

information participate simultaneously in the

updating of the labeling. Results are presented in

Section 4.

3.PARALLEL IMPLEMENTATION

Computation time is the main concern of

relaxation techniques. However these techniques

are characterized by parallel local processing

which can be easily implemented on an

architecture that favors computations between

adjacent pixels (Fishier, 1987). The method

discussed in this paper has been implemented on

a MasPar MP-1. The MasPar Parallel Processor

is a fine-grained, massively parallel SIMD

architecture, with 16,384 parallel processing

elements arranged in a 128x128 matrix and

connected by an eight nearest neighbors

interconnection network.
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The parallel implementation of the
relaxationalgorithmis straightforward,with the
quantities n nPi[Ck]andqi [Ck]computedin parallel
at eachpixel. Timings aregiven in Table 1 for
various size images and various numbers of
labels.

4. RESULTS

Figure 1 shows the results of this algorithm

on a test image. In this example, we assume that

the "ideal" image (or "ground truth") is

composed of two distinct regions and we choose

some compatibility coefficients which reflect this

assumption; the initial probabilities present three

classes, two classes corresponding to the two

"ideal" regions and one "artefact" class. The edge

image presents strong edges at the border

between the two "ideal" regions and the edge

magnitudes decrease with the distance to this

border. For this example, we notice that if the

relaxation algorithm is utilized without any edge

information, one of the labels "takes over" the

whole image after only three iterations. If the

edge information is integrated in the relaxation

process, the two regions are still separated after

10 iterations and the labeling seems to be stable.

Figures 2 to 5 present results of the

algorithm applied on a Landsat-TM scene

("Washington D.C. region") shown at the top left

corner of Figure 2. Initial probabilities for this

scene have been obtained from a classification

into seven labels, utilizing a probabilistic neural

network (see (Chettri, 1993) for details). The 7

labels correspond to the classes "urban",

"agriculture", "rangeland", "forest",

"waterbodies", "wetland", and "bareland".

The algorithm described in section 2 was

applied to this initial classification, using two

different numbers of labels; first, we grouped

these 7 labels into the 3 classes "urban",

"agriculture", and "other". Figures 2 and 3 show

the results without and with the edge

information. When no edge information is

utilized (Figure 2), one of the labels (label 0) has

"disappeared" after 20 iterations. When the edge

information is taken into account (Figure 3), the

three labels are still present after 30 iterations,

and the labeling seems to stay stable after 20

iterations.

Then, the 7 labels defined previously are

considered, and we obtain similar results: see

Figures 4 and 5. When no edge information is

utilized, only three labels are Ieft after 30

iterations and one of the three is covering most of

the image; but when the edge information is

integrated in the updating formula, all the initial

labels are still represented after 30 iterations and

the labeling seems to stabilize after 20 iterations.

Also, the results obtained after 10 or 30 iterations

can be compared to the ground truth data shown

at the top left corner of Figure 5: qualitatively, we

can observe an overall improvement of the

segmentation (e.g., suppression of small isolated

pixels or groups of pixels), but some features

(e.g., a road) have been regrouped with a

neighboring region. A quantitative evaluation of

these results will be performed later.

The previous results show the importance

of the edge information and how the integration

of edge- and the pixel-based segmentations can

improve the final result.

Other similar results have also been

obtained on AVHRR data and will be presented

at the conference.
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5. CONCLUSION

The results presented in this paper show

how the integration of complementary

information, such as pixel- and edge-based

techniques, can improve the final segmentation.

More work needs to be done, especially in

the definition of the initial probabilities, in the

choice of the compatibility coefficients, and in the

quantitative evaluation of the results. Also, the

results presented in section 4 seem to show that,

when the edge information is utilized, the

relaxation process becomes "stable" after a

certain number of iterations: this issue of

"convergence" will be studied, and different

schemes, such as the one presented in (Faugeras,

1981) will be investigated.
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Image Size # Labels Edges ?
Time per
Iteration

256*256 7 no 0.36

256*256 7 yes 0.41

256*256 3 no 0.10

256*256 3 yes 0.11

512"512 2 no 0.17

512"512 2 yes 0.17

Table 1

Timings Obtained for One Relaxation Iteration on a MasPar MP-1
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"Ideal" Edges I n _d---_Probabilities

I_ 1/no edges Ite_2/no edges I_ 3/no edges Du 1_ no edges

l_r I/edges l _er 31 edges I_ I_ edges

Results of our Method on a Test Example
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Relaxation Results Without Edge Information
on a Landsat.TM scene (3 Labels)
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Results of the "Relaxation With Edges" Method
on a Landsat.TM scene (3 Labels)
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Relaxation Results Without Edge Information
on a Landsat-TM scene (7 Labels)
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Results of the "Relaxation With Edges" Method
on a Landsat.TM scene (7 Labels)
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